
J .  Fluid Mech. (1973), vol. 58, part 4, pp .  625-639 

Printed in Great Britain 
625 

On making holes in a sheet of fluid 

By G. I. TAYLOR 
Trinity College, Cambridge 

AND D. H. MICHAEL 
Department of Mathematics, University College London 

(Received 12 October 1972) 

It is suggested in this paper that axisymmetric holes in thin sheets of fluid in 
which surface tension forces predominate will open out if they are initially large 
in relation to the thickness of the sheet; but that small holes will close up. No 
exact criterion has been found for the critical hole size in a free falling sheet, but 
the behaviour of the sheet may be closely simulated by the suspension of a soap 
film between coaxial circular rings. Theoretical results and experimental observa- 
tions on catenoid films so formed are described. 

For a hole in a sheet standing under gravity on a horizontal plane an equi- 
librium configuration exists, which is shown to be unstable. It is suggested that 
in this case the equilibrium position serves to distinguish between holes which 
open and those which close. Experiments on the behaviour of holes in a mercury 
sheet reveal a well-defined critical size which is in good agreement with that 
predicted by the unstable equilibrium. 

A further series of experiments on holes made in a sheet of water standing on 
paraffin wax gave no sharp distinction between opening and closing holes, and 
holes of a wide range of sizes could remain stationary. This behaviour is associated 
with changes in the angle of contact with the plane. Independent meniscus 
observations similar to those of Ablett for a steadily moving meniscus show that 
the angle of contact 8, for a meniscus about to advance is greater than the 
value 8, for a meniscus on the point of receding. It is seen that this difference will 
produce a range of hole diameters within which a hole will be trapped and remain 
stationary. Observations on the minimum size of hole on a water sheet which will 
remain open are reported. But it was found that the largest holes which would 
remain stationary were too large in relation to the size of the sheet for reliable 
results to be obtained. 

1. Introduction 
Studies of the disintegration of fluid sheets (Dombrowski & Fraeer 1954) have 

shown that large holes expand, but the photographs sometimes reveal small 
disturbances, where capillary waves discussed by Taylor (1959) are formed, 
which do not develop into holes. No doubt these are due to the impact of small 
particles which, if they pass through the sheet, produce holes so small that they 
close instead of opening out. That small holes would close when formed while 
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large ones would expand is to be expected because in both cases the surface area 
decreases. A sheet of uniform thickness t ,  containing initially a cylindrical hole 
of radius a for instance, would suffer a decrease in total surface area if the 
hole closed provided a < t ,  but if a > t the surface area would be reduced when 
the hole opened out. This consideration suggests that it would be of interest to 
make an experimental study of the conditions under which holes close or open 
when the hole producing agent is withdrawn or passes through the sheet. 

Experiments in which steel balls were projected through falling sheets of water 
failed to reveal any simple criterion dividing cases where the ball produced an 
expanding hole from those where the sheet reformed. 

Though the idea that small holes will close and large holes open out resembles 
an unstable equilibrium situation there is no real analogy because no hole in 
a freely falling sheet can be in equilibrium. On the other hand, holes in 
a sheet of uniform thickness lying on a horizontal plane can be in equilibrium 
under the influence of gravity and surface tension, and such configurations have 
been described. Recently Padday (1971) has extended the range of such equi- 
librium calculations and has given a good list of references. Nothing seems to 
have been published on their stability. Apart from the mathematical difficulty of 
such stability calculations when the equilibrium configurations are so difficult to 
describe, one reason for the absence of literature on the subject may be that the 
angle of contact where an interface between two fluids meets a solid is not very 
easy to measure, and sometimes depends on whether the interface is advancing 
or retreating. Even in cases where a configuration might be unstable if the angle 
of contact were independent of other factors, it  may be stabilized by dependence 
on the direction of motion of the interface in the same way that an inverted 
pendulum may be stabilized by friction of its pivots so that it can remain at rest 
upside down within a certain range of angles from the vertical. In  experiments 
to be described holes were made in sheets of water and in mercury under water. 
In  the former case the holes could remain and they were photographed (figure 11 
for example), while in the latter the holes either closed or expanded as soon as 
they were formed and the diameter of the probe was recorded as in figure 10. 

2. Equilibrium and stability of a soap film 
If a hole were to exist in relative equilibrium in a freely falling thin sheet 

equilibrium would be maintained by surface tension forces. For an axisymmetric 
hole in a uniform sheet this would imply that the two principal curvatures are 
equal and provide equal and opposite surface tension stresses. Such an equi- 
librium is exactly that of a soap film suspended axisymmetrically, say on two 
circular rings. If the rings, of radius a, are spaced a distance 2d apart, 2d might be 
taken as analogous to the thickness of a sheet containing a hole which extends 
to a radius a. 

The equation to the equilibrium configuration is well known (see for example 
Lamb 1916, art. 128), and is the catenary of revolution (or catenoid) 

r/ro = cosh (x /ro) ,  
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where x and r are cylindrical polar co-ordinates, x measuring distance along the 
axis of symmetry and r the radial distance from the axis. The radius ro is the 
minimum radius, at  the centre-plane x = 0. The form of this curve confirms that 
there is no equilibrium configuration for a hole in a plane free sheet. But for the 
film suspended on rings the boundary condition is 

a/ro = cosh (d/ro), (2) 

cosh[/g = a/d. (3) 

and this may be taken as the equation determining ro. Writing 
(2) may be written in the form 

The function coshg/g has its smallest possible value 0-152 when f;= cothf;= 1.200. 
The greatest value of d/u at which a film can exist in equilibrium is therefore 
d/u = 0.663. This point is marked C in figure I ,  which shows the catenary of 
equation (1). 

= d/ro equation 

0 0.5 1 .0 1.5 

xIr0 

FIGURE 1. The catenoid solution: A and B give two solutions for x1r = 0.625; C is the 
critical point where x/r = 0.663; D represents the limiting position for a chain hanging 
symmetrically between two smooth pulleys. 

It is interesting to compare this critical axial section with other critical 
catenary forms taken up by uniform chains hanging from fixed points. The 
catenary which spans the greatest horizontal length without raising the maxi- 
mum stress beyond a given limit is the same as the critical catenary above (see 
Lamb 1916, example 3, p. 190). Another critical catenary is that taken by a chain 
of finite length when supported by two frictionless pulleys at the farthest distance 
apart consistent with equilibrium. The support points in that case are repre- 
sented by D in figure 1, where x/ro = 1, and if I is the length of the chain the 
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greatest distance apart of the pulleys a t  which the chain can be in equilibrium is 
l / e  = 0.3681. 

For the equilibrium of the soap film, when dla c 0.663 there are always two 
catenoids. One such pair is shown in figure 1 by the two points A and B, where the 
line x / r  = d/a = 0.625 cuts the curve. 

The potential energy of the suspended film is measured by its surface area S ,  
which is given by 

For given d, S(f;) has a minimum at the point to for which to = coth&. This is 
clearly the value of 5 at which the two equilibria coalesce. Thus the two equilibria 
are on opposite sides of the minimum of S .  

2.7 - 
5* 

0 1 .o 2.0 3.0 

FIGURE 2. The variation of the surface energy F(E*), where E* = d/r,*, 
for catenaries rotated about the axis of the rings. d/a = 0.625. 

The stability of the film may be discussed in the context of the calculus of 
variations. It can be shown (for example as in Pars 1962, 9 5.8) that the position 
A is stable to displacements of a general nature, and that B is unstable. We can 
verify directly that B is an unstable equilibrium by considering the variation 
of S with changes in the profile. An interesting family of membrane profiles 
to consider, which contains the given equilibria, is the family of the catenaries 
obtained by hanging uniform flexible chains of different lengths between the 
rings, and rotating about the axis of the rings. The surface area is found to be 
271.d2P(E*), where 

and r$ is the parameter of the catenary. This area is the same as (4) when 
5" = cA or tB, and it is easily verified that F(%) has a maximum at f;* = CB and 
a minimum at c* = cA. The function P(C;*), when dla = 0.625, is shown in figure 2. 
The maximum of P ( P )  at B proves that B is an unstable equilibrium. 
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For smooth small displacements a weak minimum of A may be proved using 
the theory of the second variation. Let the membrane incur a small displacement 
so that the radius is changed to r(x) + A(x, 0)) where A(x, 0) is a smooth function 
of x and the azimuth angle 0, which is zero at the rings. The change in 8 is zero 
to the first order in A, and is given to the second order by 

where A, = aA/ax and A, = aA/a0, and these derivatives are taken as small 
quantities of the same order as A. Since the last term in the integrand is positive, 
to show the stability of A we need to ensure that 

s,""j {roAz - ( l/ro) A2} sech2 (x/ro) dx dB 
-a  

is positive definite. This can be seen by writing ( 5 )  in the form 

where u = cosh(x/r,)-(x/r,)sinh(x/r,), and u > 0 for 1x1 < d when t: < lA. 
A strong minimum of X (in which A, and A, are not assumed small) can also be 
proved at t: = tA by appeal to the Weierstrass sufficiency theorem (Pars 1962). 
Since 

x = 2 n j  r(1 +p2)*dx, 

where p = dr/dx, to show this it suffices that a2{r( 1 +p2)*}/8p2 = r( 1 + p 2 ) q  is 
positive, and that there is no conjugate point. 

An alternative method of discriminating between the stable and unstable 
positions of equilibrium is to consider the energy balance when the rings are 
displaced so that d changes to d + Sd without changing a. The force exerted by 
each ring in the x direction is 4naT sech €j in equilibrium, so that 

8naT secht . Sd = 2T(a#/ad) Sd. 

+ d  

- a  

The stability is determined by the sign of 

2 ad ( z -4nasecht : )  ad 

a t  the equilibrium position. On differentiating, this quantity is found to be 
(4 cosh2 t: sinh3 [)/(cash E -  Esinh 03. When t: = [ A  it is positive and when 5 = cB 
it is negative. Thus A is a stable position and B an unstable position. 

Figure 3 shows the variation of ro/a with d/a for the catenoid solution. For 
given a, ro increases with increasing d for the unstable position, and decreases 
for the stable position. If we regard the membrane on rings as simulating a hole in 
a sheet these results lend support to the conjecture that there is a critical hole size 
above which a hole will open, and below which it closes. Referring to figures 2 and 3, 
a hole with minimum radius r t  corresponding to a point PI one would expect to 
close. A hole corresponding to P2 should expand towards the stable equilibrium 
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FIGURE 3. The variation of r, with d for the catenoid solution. Arrows indicate the 
direction in which the minimum radius might be expected to change. 

position. This suggests that the critical hole size is given by the value of r, at the 
unstable equilibrium B for any given d. As dla increases towards the critical 
value 0.663, the two equilibria come closer together until they coalesce a t  the 
critical point. Furthermore, when the stable equilibrium reaches its critical state, 
the form of figure 2 as ( A  +&suggests that the film will then collapse into the axis. 

3. Experiments with catenoid soap films 
The apparatus used for producing catenoid soap .films is shown in figure 4. It 

consists of two copper plates A and B, each containing a hole 3.0 cm diameter. 
A is soldered to an upright post C on which B can slide so that it remains parallel 
to A .  A second post D which is fixed to A serves as a guide to keep the holes 
coaxial. A stop E can be fixed on C so that the plate B can rapidly be moved to 
a predetermined position. The plates A and B are put together into a dish of soap 
solution and B is then raised till the guide P strikes the stop E. It is then found 
that a complicated film system is formed, but by destroying the films which form 
between the guide posts, the a m  shown in figure 4 and photographed in figure 5 
(plate 1) is formed. The central plane .film G is then destroyed and the catenoid is 
left. The stop E can then be moved out to near the theoretical position for 
maximum plate separation, namely 3 x 0.66 = 1.99 cm. In  fact, the film collapsed 
when the separation was 2.05 em but remained coherent at 1.99 cm. The photo- 
graph in figure 6 (plate 1) shows this film. 

In  the configuration shown in figures 4 and 5, the catenoid sections of the film 
meet the central plane section G at angles of 120'. Using this fact, it can be seen 
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A 

FIGURE 4. Schematic diagram of an apparatus used for producing soap films. 

that the limiting position of equilibrium is when dla = 0.4078, which gives a 
maximum separation of 1.223 em. The film collapsed when 2d = 1.27 cm but was 
stable when 2d = 1.22 em. 

4. Equilibrium and stability of holes in an infinite sheet lying on a plane 
For holes in a sheet whose diameter is of the order of the depth h gravity forces 

become comparable with surface tension forces when g(pl -p2) h2/T is of orde 
unity, where p1 and pz are the densities of the heavier and lighter fluids forming 
the hole surface respectively, T is the surface tension and g is the acceleration of 
gravity. The equilibrium configuration of a hole in an infinite sheet lying on 
a plane depends on three variables, the depth h, the minimum radius R and the 
angle of contact 8. The calculations can be expressed in non-dimensional form 
by dividing all the lengths by the length k = [T/g(p,-p,)]i. In  this form the 
equation of equilibrium of the hole becomes 

where r‘ = drldx and r” = d2r/dx2. As shown in figure 7 the plane x = 0 is taken 
at the level of the minimum radius R, and x = x1 is the upper plane surface of the 
sheet. It is interesting to note that the addition of the gravity force on the right- 
hand side of ( 7 )  does enable a solution to be found which has one asymptote a t  
x = xl. If q = x1 - x, as T,I -+ 0, r ,  r’ and r” all become large, and the first term of ( 7 ) ,  
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representing the curvature in the meridian plane, dominates on the left-hand side. 
Asymptotically this term balances the gravity force. Thus for small 71, 

dar/dy2 N y(dr/dq)3, 
so that r - -log? as q + O .  

Studies of the meniscus equation (7) have been made by many workers, and 
a detailed account of previous work is given in the comprehensive study by 
Padday (1971). More recent results given by Padday & Pitt (1972) give ‘rod in 
free surface profiles’ which correspond to the profiles of holes in this context 
when x > 0. For our purposes it is desirable to correlate the values of R and h, for 
a given value of 8. 

FIGURE 7 .  Diagram giving notation for the analysis of the equilibrium of 
a hole in a fluid layer supported on a horizontal plane. 

Solutions of (7) were calculated numerically, using the gradient angle +, 
where tan+ = dr/dx. It is convenient to rewrite the equation in terms of an 
auxiliary parameter t, in the form 

dr/dt = r sin +, 
dx/dt = r cos +, 

d+/dt = (xl - x) r + cos +. 
Numerical integration of equations (8) was performed using a fourth-order 

Runge-Kutta procedure in a program written by Miss A. E. Latham. A value of 
r = R was assigned at which x = 0 and + = 0. By running trial values of xl, this 
quantity could be found with sufficient accuracy by obtaining a lower bound for 
which @ < 97~ when x = x,, and an upper bound for which + exceeds @r before 
x = x1 is reached. Step lengths of 0-001 in t were found sufficient to establish x1 
to two places of decimals for values of R down to 0.1. Having established xl, the 
equations can then be integrated backwards in x to obtain the height of the layer 
below x = 0, down to the point y9 = &r - 8 ( < 0 ) ,  which represents the contact 
with the plane. Thus the total height of the sheet could be ascertained for given 
8 and R. Figure 8 gives the results of these calculations, in which the loci of 
equilibria in the h, R plane are given for a range of contact angles. The results 
given for 0 = 90” are in close agreement with values calculated from table 3 
of Padday & Pitt for ‘rod in free surface profiles’, which are marked in figure 8 
with an x . It is seen that R increases monotonically with h and approaches 
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infinity as h approaches an asymptotic value. The asymptote may easily be 
ascertained since it represents the value of h for a plane hole. In  this case the 
second term of the left-hand side in (7) is absent and the equation can be inte- 
grated in simple terms. The solutionisgiven by Lamb (1916, art. 127), from which 
it can be verified that the asymptotic value of h is 2 sin gS. 

180- 

+ 1.0 

0 

- 1.0 
0.1 0.5 1 .o 1.5 2.0 

h 

FIGURE 8. Numerical calculation of minimum hole radius R as a function of height h, for 
fixed contact angle 8. R and 76 are made dimensionless with respect to k. 

Figure 8 is analogous to figure 3 for the catenoid solution, and it may be con- 
jectured from the analogy that the equilibria obtained here are unstable. To 
establish this instability it suffices to show that there is one small displacement 
for which the potential energy is reduced. 

Consider the mass of fluid in the sheet within a large radius r = L. We construct 
an axisymmetric virtual displacement of this fluid which (a) is incompressible, 
( b )  keeps the angle of contact 8 unchanged, and (c) moves each element hori- 
zontally in the radial direction of r. To satisfy these conditions let the radius r(x) 
at the hole surface change to r(x) - 6, where 6 is a small constant independent of 
height x. Evidently this gives rise to a radially inward displacement S* at the 
radius r* ( > r )  a t  the same height, where r2 - (r - = r*2 - (T* - 6*)2. Since 
gravity does no work on the fluid the work done is 

(xl-x) (26r-S2)dx 
Xa 

N P ,  -PA g /  

+ TT cos 8 {2r2 6 - a2} - TT sin $,(L) (2LS - S2}. 

Here r2 and x2 represent the values of r and x at the base, xl(L) is the value of 2 at 
the upper nurface at r = L, and ?cr,(L) is the slope angle at this point. The surface 
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area increases by - 27rS[s]$tL), where [s]$~) denotes the arc length of the hole 
profile for the section considered. A sufficient condition for instability will be 

n(p, -p2)g [xl(L) (xl - x) (26r - S2) dx + nT cos 8(2r26- S2) 

nT sin $,(L.) (2LS - S2) + 2~T[s]$~) S > 0, 

to order S2, the terms of order 6 being zero. After some reduction we find this 
quantity to be 

1 q-x)2 ZlW) 
S2 [71(P1-P2) g [(+ +nT(sin@,(L) - COSO) 9 

XP 

which becomes in the limit, as L+m, 482nT(4sin2 +8 -h2) .  Since h < 2 sin $0 the 
equilibrium is statically unstable. The virtual displacement used here is a sliding 
displacement at the base of the sheet, and so would not represent the actual 
movement of the layer away from the equilibrium, but the virtual displacement 
could be made more realistic, say by excluding from the displacement a very thin 
layer adjacent to the plane, without invalidating the result. 

Q7e may interpret figure 8 in the same way as figure 3 for the catenoid. For 
h = h, < 2sin48, the value of R for the unstable equilibrium should represent 
a critical hole size, for given 8, in an infinite sheet. Larger holes should open out, 
and smaller ones should close up. 

5. Experiments on making holes in a mercury sheet 
Holes were made in a mercury sheet below water using a graduated series of 

accurately made cylindrical probes. With probes of small diameter the holes 
closed up when the probe was removed, but as probes of increasing diameter were 
tried a critical diameter was found above which the hole opened out. The sheets 
were contained in an accurately made perspex (lucite) dish, with internal diameter 
14.2 em and depth 5 em (see figure 9), on to the bottom of which a glass disk was 
fixed centrally. In  the first experiments this disk was 4 em in diameter and 0.1 em 
thick, but this was so thin that the fluid left the wall of the dish while it was still 
continuous over the disk. The disk was replaced in later experiments by one 
0.635 ern thick x 5.08 ern diameter, and over this disk holes in mercury which 
opened could still be made when the diameter of the hole maker was 0.16 ern and 
the depth of mercury 0.19 em. 

Two brass bridges, which could be accurately located by means of pins which 
mated with holes in the rim of the dish, carried respectively a micrometer for 
measuring the depth at  the centre, and a steel capillary tube 0.16 em in diameter 
as shown in figure 9. This tube served as a guide to the probes when making holes 
and as a means of introducing the upper fluid a t  the bottom of the probe by 
a syringe so that the fluid which was being penetrated did not flow back when the 
probe was lifted off the central glass disk. As the probes were carefully lifted off 
by hand the correct manipulation of this syringe proved to be a critical feature 
of the experiments with mercury. 

It was realized that the dish, which had been designed for another purpose, was 
too small to obtain results for large holes which could usefully be compared with 
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FIGURE 9. Diagram of apparatus used for producing holes in a layer of mercury under 
water. The same apparatus was used to produce holes in a water sheet using an air jet 
instead of the probes, when the disk waa coated with paraifin wax. 

Probe diameters (cm) 
r 
0-502 0.580 0.672 0.752 0-821 0.897 1.016 1.139 1.403 1.703 2.109 2.302 2.504 2.554 

A 
-7 

Sleeve diameters (om) 
7-A- 

0-247 0.296 0.347 0.394 0.449 

TABLE 1. Probe and sleeve sizes 

calculations which assumed that the fluid extended to a very large area, because 
the depth was measured after the hole had been closed. The increase in depth 
when a hole expands in a dish of limited diameter must have a stabilizing effect 
on the expanding hole, and in fact within a small range of depths a hole did some- 
times expand after being formed to a radius which was still within the area of the 
glass disk. If the hole diameter is 2Rcm the general level of the fluid may be 
expected to be reduced approximately by a factor (2R/14.2)4 when the hole 
closes in a dish 14-2 cm in diameter. 

The diameters of the perspex probes used are listed in table 1. Each had a 
central hole slightly larger than 0.16 cm, and they were short enough to be com- 
pletely immersed in the upper fluid when they reached the lower fluid. For the 
smaller holes a set of steel sleeves was used instead, whose dimensions are also 
given in table 1.  

Figure 10 shows the results of the experiments in which a mercury sheet under 
water was penetrated by probes. A circle represents an experiment in which the 
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hole closed as the probe was removed and a cross one where it opened out. It will 
be seen that at a given depth probes larger than a critical diameter open up a hole, 
but smaller probes make holes which collapse when the probes are removed. 

1.0 - 
2R (cm) 

0.5 - 

0 1  I I I 
0.15 0.20 0.25 0.3 

h. (om) 

FIGURE 10. Experimental observations of holes in a mercury sheet with theoretical 
equilibrium curves superposed. , hole which closed; + , hole which opened out. 

The fact that there appeared to be a sharply defined critical probe size dividing 
those which made holes which closed when the probe was removed from those 
which opened suggested that, unlike the water experiments to be described later, 
changes in the angle of contact with direction of motion of the meniscus had little 
stabilizing effect in the case of holes in mercury sheets under water. The surface 
tension of the interface between water and mercury has been given values 
ranging from 350 to 400 dyneslcm in the literature, but recently Padday & Pittt 
have redetermined it using all the resources of their laboratory and computer, 
and their value is 384.4 dynes/cm. With this value of T and with p1 = 13.6 g/cm3 
and pz = I g/cm3 k = 0.176 cm. Direct measurement of the angle of contact is 
difficult to achieve. For purposes of comparison the curves of (h, R) of figure 8 
for 8 = 135", 140", 150" and 180" are shown in figure 10 using k = 0.176cm. 
Good agreement with the observations is given when 8 is 150". 

6. Experiments with air holes in a water sheet 
To make holes in a sheet of water lying on a horizontal surface that surface must 

be hydrophobic and to make the glass disk hydrophobic a solution of pure 
paraffi wax in a volatile fluid known as petroleum ether was run over the glass 
disk and allowed t o  dry. The wax coating thus produced turned out to be very 
uniform but it was liable to be damaged when the probes used in the mercury 
experiments were used. Holes could be made, however, without damaging the 
wax coating by blowing an air jet vertically downwards on to the surface of the 
water. Figure 11 (plate 2) gives photographs of two of the holes produced in this 

t Private communication. 
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way which remained open after the blowing had stopped. It will be seen that they 
are good circles indicating that the angle of contact round the edge, which one 
would expect to depend on the quality of the deposit of wax, is constant. Holes 
could be made with the probes but their irregularities indicated that the wax 
coating had been spoiled. The experimental method was to use the same micro- 
meter mounted on a bridge as was used in the mercury experiments for measuring 
the depths, but the diameters of the holes were measured by photographing them 
from above by light reflected from a mirror placed below the tank. The source of 
light was an electric bulb about 4ft  away. The procedure was to measure the 
depth, then blow holes of increasing size till one remained open when the air jet 
was cut off. Larger holes would remain open and within a small range of depths 
a large hole would increase when the air jet was cut off. The fact that holes can 
remain stationary is contrary to the predictions from the theory given earlier 
for an invariant angle of contact, and it suggests that the angle of contact 
depends on whether the meniscus is advancing, in which case the hole is closing, 
or retreating, when the hole is opening. If this is so the angle of contact 6, for the 
advancing meniscus will be larger than the value 0, for a retreating meniscus. If 
the curves for these two angles of contact are drawn in the h, R plane of figure 8 
they de-fine a range of R for given h within which a hole can be trapped. 

The fact that the holes made in these experiments can remain at rest over 
a large range of sizes must be due to a large difference between 6, and 6,. We are 
grateful to one of the referees for pointing out that steady dynamical measure- 
ments of 8, and 8, for water on paraffin wax were performed by Ablett (1923),  
using a partly immersed rotating cylinder coated with the wax. Ablett found 
that the contact angles were identical at steady slow rotations with 6 = 104' 34' 
and at higher velocities they reached constant, but differing values 6, = 113" 9' 
and 8, = 96' 20'. Here it was not found possible to measure the contact angles 
directly, and indeed the contact angle often takes time to establish itself at its 
final value, so that even if a h a 1  value attained after a long period of observations 
could be measured it would not be useful in making comparisons between theory 
and experiments with rapidly made holes. One method for measuring contact 
angles of a water/air interface where it meets a solid surface is to push a capillary 
tube of the solid material into water and observe the height of the meniscus above 
or below the level of the surrounding water. 

If d is this height and a (4 d )  is the radius of the capillary tube 

so that 

2naT cos 0 = na2pgd, 

cos0 = +(pgad /T) .  ( 9 )  

To prepare a surface which would be comparable with that used in the experi- 
ments a glass capillary tube of 0.1 ern bore was filled with a solution of paraffin 
wax in petroleum ether of the same concentration as that used in the hole-making 
experiments. This was then emptied and dried. When the tube was pushed into 
water the meniscus rapidly rose till it was 1-45cm below the surface of the 
surrounding water. It was then left in position. The meniscus rose very slowly 
till after some hours it had risen to 1.24 em below the water level. The tube was 
then raised and the meniscus fell rapidly to a level 1.25 ern above the surrounding 
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water. After some hours it had fallen to 1-15 cm above the level outside. Taking 
T = 74dyneslcm (9) gives 8, = 119' for d = - 1.45cm and 6, = 65.7' for 
d = 1.25cm. To find whether the thickness of the wax film was critical the film 
was deposited from wax solutions of different concentrations and the results 
differed only very slightly. It will, however, be noticed that when 8 is less than 
90" the radius of the line of contact of the edge of the hole is slightly greater than 
that which has been defined as R. To make a comparison with theory the depen- 
dence of the radius of the ring of contact on the depth of the fluid has been calcu- 
lated for the case when 8 = 65'. It will be seen (figure 12) that very little error 
would be committed if the observed radius of the hole were taken as that at which 
tangents can be vertical. 

O , = W  o,,= 119" 

0 0.5 1 .o 1.5 

h 

FIGURE 12. Experimental observations and predictions for holes in water on paraffin wax: 
-, R for 0 = 65" and 119"; ---, the minimum radius for 8 = 65"; 0, +, two sets of 
observations of the minimum hole size which would remain open. 

The results of two sets of measurements made with two glass disks coated with 
wax at  different concentrations are shown in figure 12. The value of k used to 
make the observed measurements non-dimensional is Ic = 0-274cm. It will be 
seen that the smallest hole that can be made at any given depth is always slightly 
greater than the value calculated for an advancing meniscus with 8, = 119". 
This could be expected in any case because the method of blowing, of gradually 
increasing the size till a hole remained open, was not mechanized and required 
a little practice. 

The second named author wishes to thank Miss A. E. Latham for her assistance 
in programming the numerical solutions of equations (8) leading to the theoretical 
curves given in figures 8, I0 and 12. 
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